Benford's Law

Introduction

Benford's Law (which was first stated by Simon Newcomb in 1881) states that if you randomly select a number from a table of physical constants or statistical data, the probability that the first digit will be a " 1 " is about 0.301 , rather than 0.1 as we might expect if all digits were equally likely. In general, the "law" says that the probability of the first digit being a d is

$$
P(d)=\log \left(1+\frac{1}{d}\right)
$$

This implies that a number in a table of physical constants is more likely to begin with a smaller digit than a larger digit. It was published by Newcomb in a paper entitled "Note on the Frequency of Use of the Different Digits in Natural Numbers", which appeared in The American Journal of Mathematics (1881) 4, 39-40. It was re-discovered by Benford in 1938, and he published an article called "The Law of Anomalous Numbers" in Proc. Amer. Phil. Soc 78, pp 551-72.

1. Use this formula to find the probability of the first digit being a $1,2, \ldots, 9$.
2. Using a table of physical or statistical data that contains at least 100 data values (an atlas would be useful here), determine the number of leading digits that are a 1 , a 2 , etc. Compare your results to the results expected if Benford's Law applies.
3. Visit the website to learn how Benford's Law is used to detect corporate and scientific fraud.

Downloading a TI-8x program file

Download a TI-8x program to a Windows computer as follows:

1. Right-click on the program name.
2. Click on "Save Target As ..."
3. Change to the correct directory.
4. In the File edit box, type the filename, with the extension (e.g. ben.83p)
5. Change "Save as Type:" to "All Files"
6. Click on [Save]. The file is now saved
7. Use the appropriate GraphLink program to upload the program to your graphics calculator.

The Programs

To use the programs BEN.83P, BENFORD.83P, BEN.8XP and BENFORD.8XP:

1. Enter your data in list L1.
2. Run the program.

The programs BEN.83P (for the TI-83) and BEN.8XP (for the TI-83 Plus) calculate the relative frequency of each leading digit. List L1 contains the original data, list L 2 contains the digits 1 to 9 and list L3 contains the relative frequency of each of these digits.

You can draw a scatterplot of the data using Xlist $=\mathrm{L} 2$ and $\mathrm{Ylist}=\mathrm{L} 3$. If you set $\mathrm{Y} 1=\log (1+1 / \mathrm{x})$ you can see how well the dataset fits the model proposed by Newcomb and Benford.

The programs BENFORD.83P (for the TI-83) and BENFORD.8XP (for the TI-83 Plus) do the following:

* calculate the relative frequency of each leading digit.
* draw the scatterplot of the relative frequency of each leading digit, along with the function $\mathrm{Y} 1=\log (1+1 / \mathrm{x})$
* draw the residual plot using the function $\mathrm{Y} 1=\log (1+1 / \mathrm{x})$ as the line of best fit.

