Exercise 7J - Worked Solutions to the Problems

Hints

1. Recall that $32=16 \times 2$, and $a^{5}=a^{4} \times a$.
2. Recall that $\frac{1}{4}=\left(\frac{1}{2}\right)^{2}$.
3. Recall the change of base rule: $\log _{a} b=\frac{\log _{c} b}{\log _{a} b}$.
4. Recall that $P=P_{0} \times a^{t}$. What are P_{0}, P and a in this problem? Take the \log of both sides to solve for t.
5. Given a fixed annual rate of growth, the population is given by $P=P_{0} \times a^{t}$, where P_{0} is the population at time t_{0}, and a is the annual rate of growth. Solve these resulting equation for t.
6. Recall Log Law 2: $\log A-\log B=\log \frac{A}{B}$. In words, "The difference of two logs equals the \log of their quotient." How might this fact be useful for finding an answer to the problem posed?
7. Note that $1025=4100 \div 2^{2}$ and that $1024=2^{10}$. Use this information to write an expression for a involving $\log 4100$ and $\log 2$.
8. Use the change of base rule to write each of the logarithms to a common base, say 10 . Then use log laws and other algebra to simplify.
9. Let $2^{\log _{2} 3}=x$ and re-write this index equation as a log equation. First note that $9=3^{2}$, so change the base to 3 . Now set this expression equal to y and re-write this index equation as a log equation.

Exercise 7J - Worked Solutions to the Problems

1. $\sqrt[4]{32 a^{5}}=\sqrt[4]{16 \times 2 \times a^{4} \times a}$

$$
\begin{aligned}
& =\sqrt[4]{16} \times \sqrt[4]{2} \times \sqrt[4]{a^{4}} \times \sqrt[4]{a} \\
& =2 \times a \times \sqrt[4]{2} \times \sqrt[4]{a} \\
& =2 a \sqrt[4]{2 a}
\end{aligned}
$$

2. Recall: $\frac{1}{4}=\left(\frac{1}{2}\right)^{2}$.

$$
\begin{aligned}
\therefore \quad\left(\frac{1}{4}\right)^{\frac{1}{4}} & =\left[\left(\frac{1}{2}\right)^{2}\right]^{\frac{1}{4}} \\
& =\left(\frac{1}{2}\right)^{\frac{2}{4}} \\
& =\left(\frac{1}{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

3. Now

$$
\begin{aligned}
\log _{c} b^{2} & =2 \log _{c} b \\
& =2 \frac{\log b}{\log c}
\end{aligned}
$$

And

$$
\log _{b} c^{3}=3 \log _{b} c
$$

$$
=3 \frac{\log c}{\log b}
$$

$$
\therefore \quad \log _{c} b^{2} \times \log _{b} c^{3}=2 \frac{\log b}{\log c} \times 3 \frac{\log c}{\log b}
$$

$$
=6
$$

4. $\quad P=P_{0} \times a^{t}$, where
$P_{0}=500000$,
$P=500000000$, and
$a=2$.
Substituting

$$
\begin{aligned}
500000000 & =500000 \times 2^{t} \\
1000 & =2^{t} \\
\log 1000 & =\log 2^{t} \\
\log 1000 & =t \log 2 \\
t & =\frac{\log 1000}{\log 2} \\
t & =9.966
\end{aligned}
$$

Since this represents the number of 20 minute periods, the number of minutes ≈ 199 minutes.
5. $\quad P=P_{0} \times a^{t}$, where
$P_{0}=19$ million at time t_{0} (1998)
$P=30$ million at time t
$a=1.016$

Substituting

$$
\begin{aligned}
30 & =19 \times 1.016^{t} \\
\frac{30}{19} & =1.016^{t} \\
\log \frac{30}{19} & =\log 1.016^{t} \\
\log 30-\log 19 & =t \log 1.016 \\
t & =\frac{\log 30-\log 19}{\log 1.016} \\
t & \doteq 28.8
\end{aligned}
$$

Since $t_{0}=0$ in 1998, Australia's population will reach 30 million in 2027, if it continues to grow at the same rate.
6. Say $\operatorname{List} 1=\{2,4,12,24,72,144,1440\}$

Since Log Law 2 states that $\log \frac{A}{B}=\log A-\log B$, finding the differences in the logarithms of the numbers in List1 is equivalent to finding the ratios of the numbers themselves. So:
Let \quad List2 $=\log$ (List1)
And List3 $=\Delta$ List(List2) \quad \{Find the difference in the logs $\}$
So \quad List $4=10^{\text {List3 }}$
\{The inverse operation of taking logs\}
List 4 contains the required ratios.
7.

$$
\begin{array}{ll}
& a=\log \frac{1025}{1024}=\log \frac{4100 \div 2^{2}}{2^{10}}=\log \frac{\frac{4100}{2^{2}}}{2^{10}} \\
\therefore & a=\log \frac{4100}{2^{12}}=\log 4100-\log 2^{12}=\log 4100-12 \log 2 \\
\text { But } & b=\log 2 \\
\text { So } & a=\log 4100-12 b \\
\text { Hence } & \log 4100=a+12 b
\end{array}
$$

8. Using the change of base rule,

$$
\log _{x} x y z=\frac{\log x y z}{\log x}, \quad \log _{y} x y z=\frac{\log x y z}{\log y}, \text { and } \log _{z} x y z=\frac{\log x y z}{\log z}
$$

So

$$
\frac{1}{\log _{x} x y z}=\frac{1}{\frac{\log x y z}{\log x}}=\frac{\log x}{\log x y z} \text { and similarly for the other two terms. }
$$

Hence

$$
\begin{aligned}
\frac{1}{\log _{x} x y z}+\frac{1}{\log _{y} x y z}+\frac{1}{\log _{z} x y z} & =\frac{\log x}{\log x y z}+\frac{\log y}{\log x y z}+\frac{\log z}{\log x y z} & & \\
& =\frac{\log x+\log y+\log z}{\log x y z} & & \text { \{adding numerators \}} \\
& =\frac{\log x y z}{\log x y z} & & \text { \{Log Law 1\} } \\
& =1 & &
\end{aligned}
$$

9. Let $\quad 2^{\log _{2} 3}=x$

Then $\log _{2} x=\log _{2} 3 \quad$ \{rewrite the index equation as a log equation\}
So

$$
x=3
$$

$$
\left\{\text { if } \log _{c} A=\log _{c} B \text { then } A=B\right\}
$$

Similarly $\quad 9^{\log _{3} 2}=y$
So $\quad 3^{2 \log _{3} 2}=y$
$3^{\log _{3} 2^{2}}=y$
\{write 9 as a power of 3 \}

$$
3^{\log _{3} 4}=y
$$

Hence $\quad \log _{3} y=\log _{3} 4 \quad$ \{rewrite the index equation as a log equation\}
So

$$
y=4
$$

$$
\left\{\text { if } \log _{c} A=\log _{c} B \text { then } A=B\right\}
$$

Finally $\quad 2^{\log _{2} 3}+9^{\log _{3} 2}=x+y$

$$
\begin{aligned}
& =3+4 \\
& =7
\end{aligned}
$$

