Errata

Year 11 Mathematics B, A Graphics Calculator Approach

Despite considerable effort to make the text error-free, some errors have weasled their way into the textbook. The ones we know are listed below. Please email Rex Boggs at rboggs@bigpond.net.au if you find others, so we can keep this list up-to-date.

Chapter 7

7H.2, Q7b
....The percentage error is greater.
7H.2, Q7c
....The Rule is not very accurate for larger interest rates.

Chapter 8

page 255
The definition of a polynomial is clearer if it reads in part "...and the indices, $n, n-1, \ldots, 1,0$ are non-negative whole numbers."

Answers
8C.1, Q4c

$$
x+3, x \neq \mathbf{4}
$$

8C.1. Q4e
$3 x-2$ for $x \neq-\frac{3}{2}$
8C.2, Q1p
$\frac{x^{8}}{81}-\frac{2 x^{6}}{27}+\frac{x^{4}}{6}-\frac{x^{2}}{6}+\frac{1}{16}$
8 F Q1c $\quad 3\left(25-20 x+4 x^{2}\right)$, which probably is 'simpler' in its factored form, $3(5-2 x)^{2}$.
8F Q5b(i)
$16-23 x+9 x^{2}-x^{3}$

Chapter 9

page 285, Example 9.2, part (b) solution
The range is $\{3.30,5.50,7.70,8,80,9.90, \ldots, 31.9\}$
Answers
9C, Q7
24 days. There is 40 days supply left with $\mathbf{3 0}$ horses. With $\mathbf{5 0}$ horses the food is eaten at a rate $\frac{5}{3}$ faster, so the supply will last for $40 \times \frac{3}{5}$ days.
9D. 1 Q4
9D. 2 Q3d

$$
(x-2)^{2}+(y-2)^{2}=25
$$

-

$(x+4)^{2}+y^{2}=18$

Chapter 10

Answers
10A Q1h
10A Q4
10C Q12c
10C Q13a-c
2.3652×10^{9}
Parts are (a) and (b), not (a) and (c).
The car travels with a constant velocity of 30 km per hour for 4 minutes. these are examples only.
a.

c.

b.

10C Q15a

Chapter 11

Page 330
In the first table, the last two x-values are out of order.
page 348, Exercise 11G, Question 4
The question defies the law of gravitational attraction. Further, the velocity and acceleration are both zero at time $t=0$. Change the function to $h=45 t-5 t^{2}$. The answers then are:
a. $\frac{d h}{d t}=45-10 t$
b. The rocket reaches its maximum height of 101.25 metres after 4.5 seconds.

Answers
11B Q2 the answers are for Q3.

Chapter 12

page 370, Exercise A, Question 2a(i)
Should be 57.8^{0} (i.e. to the zero power), not 57.8 degrees.

Answers

Section A, Q2c(ii)

$$
\frac{t^{2}}{3 s^{4}}
$$

