Mathematics for Queensland, Year 12 Worked Solutions to Exercise 1H

Hints

1. For an even function, $f(-x)=f(x)$. Algebraically this means that the value of the function is the same for any value x and its negative. Graphically this means that the function is symmetric about the x-axis. For an odd function, $f(-x)=-f(x)$. Graphically this means that the function has rotational symmetry about the origin through 180°.
Also, consider the values of sin, cos and tan in the unit circle.
2. This can be done most easily using a graphics calculator. The absolute value function on a TI82 or TI-83 calculator is found under [Math] [Num] [Abs].
3. The scale can be determined from the diagram. The answer depends upon where we place the origin. You get to choose, so choose a nice spot. Find the period and amplitude, and you are well underway!
4. The function is of the form $y=A \cos [B(x-C)]+D$. We need to determine the value of each of these parameters from the information given. Since C depends upon the date, and the starting date doesn't matter, you can choose C to be any value you wish. Which value is easiest?
5. This is best solved using a graphics calculator.
6. a. What is the maximum value of $\sin n t$, for any value of n ? Use this information to solve for a when $p=180$.
b. This is very difficult to solve algebraically. Try guess-check-refine.
7. This is best solved using a graphics calculator. How many minutes after midnight is $6: 15 \mathrm{a} . \mathrm{m}$. ?

Mathematics for Queensland, Year 12 Worked Solutions to Exercise 2J

1. For an even function, $f(-x)=f(x)$. Algebraically this means that the value of the function is the same for any value x and its negative. Graphically this means that the function is symmetric about the x-axis.
Since the graph of the cosine function is symmetric about the x-axis, it is an even function.
Also, from the unit circle, it should be clear that $\cos (x)=\cos (-x)$.
For an odd function, $f(-x)=-f(x)$. Graphically this means that the function has rotational symmetry about the origin through 180°. The graph of both the sine function and the tangent function have this symmetry and hence are odd functions.
Also, from the unit circle, it should be clear that $\sin (-x)=-\sin (x)$ and $\tan (-x)=-\tan (x)$.
2. This can be done most easily using a graphics calculator. The absolute value function on a TI-82 or TI-83 calculator is found under [Math] [Num] [Abs]. We will work in radians.

$$
\begin{aligned}
Y 1 & =|\sin x-x| \\
Y 2 & =0.2
\end{aligned}
$$

From the graph, one solution is:

$$
x=-1.08
$$

The absolute value makes the graph is symmetric about the x -axis, so the second solution is:

$$
x=1.08
$$

3. The answer depends upon where we place the origin. The scale can be determined to be $1: 10$ from the diagram. From the scale given, the period is $\frac{2}{3} \times 460 \approx 307$. By measuring and applying the scale, we find the amplitude is approximately 50 cm . If we place our origin at the centre of the right side, then we have a cosine function of the form:

$$
y=A \cos (B x)
$$

where

$$
A=50
$$

and $\quad B=\frac{2 \pi}{\text { period }}=\frac{2 \pi}{307} \approx 0.0205$
Hence our function is given by

$$
y=50 \cos (0.0205 x)
$$

As a check, we will sketch this function in the window (-230, 230, $115 ;-100,100,10)$. The graph is alongside. Looks pretty good!

4. The function is of the form $y=A \cos [B(x-C)]+D$. We need to determine the value of each of these parameters.
The amplitude $A=1 / 2\left(Y_{\text {max }}-Y_{\text {min }}\right)=0.5(2600-200)=1200$.
Since the average flow $=200+1200=1400$, the vertical shift $D=1400$ units.
C depends on the date from which we first calculate flow. Since the date isn't specified, we can set $C=0$.

The period is one year or 365 days, so

$$
B=\frac{2 \pi}{\text { period }}=\frac{2 \pi}{365} \approx 0.0172
$$

Hence our function is given by:

$$
=1200 \sin (0.0172)+1400
$$

The graph is shown alongside.

We now add the function

$$
\mathrm{Y} 2=2500
$$

and use our calculator to find the values of for which the function is greater than 2500 .

The graphs intersect at $x=67$ and to our model, the flow is greater than 2500 units for about 115-

5. s shown alongside using the window ($0,12,1 ; 0,6,1$).

From the graphics calculator, the -coordinates of the intersection are:

$$
x=2
$$

and $=10$.

Therefore we expect the water to be at the 4 metre mark at 2 a.m. and 10 a.m.
6. Given $p=+a \quad t$. If $p=180$ then

$$
180=125+a \sin 10 t
$$

$$
55=a \sin 10 t
$$

Now $\sin 10 t$ has a maximum value of 1 , therefore the artificial artery will rupture is the value of a is greater than 55 .
b. Given is $\quad p=125+a \sin 10 t$. We need to find the value of a such that the value of the function exceeds 150 for more than 0.25 seconds. This is difficult to solve algebraically, so we will solve this problem using guess-check-
refine.
We will make a table to keep track of our results.

\mathbf{a}	time > 150
55	$0.2670-0.0471=0.2199$
60	$0.2712-0.0430=0.2282$
80	$0.2824-0.0318=0.2506$

Using this criterion, the blood vessel will rupture if the exertion level exceeds 80 .
7. The graph of $m=340-50 \cos \left[(n+10) \times \frac{2 \pi}{365}\right]$ in the window $(0,365,0 ; 280,400,0)$ is shown alongside.
Now 6:15 a.m. is $6 \times 60+15=375$ minutes after midnight, so we need to add Y2 $=375$ to the graph. The points of intersection occur at
$x=126$
and $\quad x=218$
Hence, you leave for work before sunrise from day 127 to day

217 , for a total of $217-127+1=91$ days.

